

Soil moisture maps used for:

- ▶Pest management
- ➤ Irrigation schedules
- ➤ Biomass production
- ➢Ground water models
- >Erosion models
- CO₂ emission models

The Radar Advantage

- Active sensor with high spatial resolution
 - 6 to 25 m
- Day or night operation
- Physical models describe scattering
 - IEM and others
- Radar satellites currently in orbit
 - Radarsat, ERS
- Depth penetration
 - 1 to 10 cm depending on wavelength and soil moisture

Study Area

Arizona Arizon

Components of backscatter

Models

- 1) Integral Equation Method (IEM)
 - models radar and its interactions with surfaces
 - Invert backscatter to obtain O_v

if
$$\sigma^{\circ} = f(\Theta_{v,r})$$
 rough)
then $\Theta_{v} = f(\sigma^{\circ}, rough)$

2) Delta Index

- $-\Delta$ -index = abs[($\sigma_{\text{wet}}^{\text{o}}$ $\sigma_{\text{dry}}^{\text{o}}$)/ $\sigma_{\text{dry}}^{\text{o}}$)*100],
- $-\sigma_{dry}^{o}$ = average radar backscatter of dry scene,
- $-\sigma_{\text{wet}}^{\text{o}}$ = average radar backscatter of wet scene.

General approach

Site specific relationships not good

Habitat scale better

Watershed scale best but...

14% range in soil moisture

The narrow range in backscatter makes inversion difficult

Roughness adjustments help, but...

A new approach — The delta Index

Delta index calculated from backscatter

Does IEM reproduce delta index results?

In scattering models rocks matter

wet or dry, rocks have dielectric similar to dry soil

σº high moist soil

σ° low rocks

Less bulk volume capable of retaining moisture suppresses backscatter response

entire
volume has
dielectric of
dry soil

entire volume has dielectric of moist soil

50% of volume has dielectric of dry soil and rock, 50% has dielectric of moist soil

Explanation of Δ -index

- Δ-index implicitly accounts for roughness, vegetation, slope, and rock fragments because these do not change between image acquisitions
- Sensitive to proportional change in moisture

Advantages of Δ-index

- Δ-index approximates the 1:1 line
- Can be used with both ERS and Radarsat
- Easy to implement and requires only
 - dry scene and unchanging roughness
 - very good image to image registration
- Does <u>not</u> require roughness measurements

Regardless of model used speckle still causes trouble

 There are trade-offs between accuracy and scale.

 Over smaller areas estimates of soil moisture become less reliable.

Accuracy and Resolution

This is primarily due to image speckle.

Determining appropriate spatial scale - region growing algorithm

Grows a region around field site

Computes statistics (mean, STDV, and CI)

Region Growing algorithm

Grows a region around field site

Computes statistics (mean, STDV, and CI)

Region Growing algorithm

Grows a region around field site

Computes statistics (mean, STDV, and CI)

Filtering and spatial averaging reduce backscatter variability

Block filters minimize effect of outlying speckle

Optimum pixel cluster and effective ground area

Spatial scale vs. model accuracy

Conclusions Revisit "The Radar Advantage"

- Day or night operation
 - Still true
- Radar satellites currently in orbit
 - Radarsat, ERS
 - More satellites = more viewing opportunities
- Depth penetration
 - 1 to 10 cm depending on wavelength and soil moisture
 - Still the best of any orbiting sensors
- Physical models describe scattering
 - IEM and others
 - IEM has limits due to roughness and rocks
 - Delta index is a good alternative with considerable promise
 - Easy to implement
 - Doesn't require roughness
 - Active sensor with high spatial resolution (6 to 25 m)
 - Tradeoff between resolution and accuracy
 - Speckle limits accurate estimates to about 200 m

